Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120745, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34972054

RESUMO

Simple, accurate, and precise four spectrophotometric methods were developed and validated for simultaneous determination of glimepiride and pioglitazone hydrochloride in their pharmaceutical formulation. The first spectrophotometric method was the dual-wavelength which determined glimepiride at 219.0 and 228.0 nm and pioglitazone hydrochloride at 268.0 nm. The second one is the first derivative of ratio spectra (DD1) spectrophotometry in which the peak amplitudes were used at 238.0 nm and 268.0 nm for glimepiride and pioglitazone hydrochloride, respectively. The third method is ratio subtraction in which glimepiride was determined at 228.0 nm in the presence of pioglitazone hydrochloride which was determined by extended ratio subtraction at 268.0 nm. The fourth method was the ratio difference to determine glimepiride and pioglitazone hydrochloride. Beer's law was confirmed in the concentration range 2.50-15.00 µg mL-1, and 10.00-50.00 µg mL-1 for glimepiride and pioglitazone respectively for the four methods. The proposed methods were used to determine both drugs in their pure powdered form with mean percentage recoveries of 99.91 ± 1.117% for glimepiride and 99.76 ± 0.911% for pioglitazone hydrochloride in method (A). In method (B), the mean percentage recoveries were 100.12 ± 0.89% for glimepiride and 100.02 ± 1.06% for pioglitazone hydrochloride. In method (C) glimepiride was 100.01 ± 0.592% and 99.85 ± 0.845% for pioglitazone hydrochloride by extended ratio subtraction. And finally, in method (D) the mean percentage recoveries were 100.66 ± 0.670% for glimepiride and 99.92 ± 0.988% for pioglitazone hydrochloride. The developed methods were successfully applied for the determination of glimepiride and pioglitazone hydrochloride in pure powder and dosage form. The suggested methods were also used to determine both compounds in laboratory-prepared mixtures. The accuracy, precision, and linearity ranges of the developed methods were determined. The results obtained were compared statistically with the official method, and there was no significant difference between the proposed methods and the official method for accuracy and precision.


Assuntos
Compostos de Sulfonilureia , Composição de Medicamentos , Pioglitazona , Reprodutibilidade dos Testes , Espectrofotometria
2.
J AOAC Int ; 99(4): 941-947, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27302698

RESUMO

Six simple, accurate, reproducible, and selective derivative spectrophotometric and chemometric methods have been developed and validated for the determination of levamisole HCl (Lev) either alone or in combination with closantel sodium (Clo) in the pharmaceutical dosage form. Lev was determined by first-derivative, first-derivative ratio, and mean-centering methods by measuring the peak amplitude at 220.8, 243.8, and 210.4 nm, respectively. The methods were linear over the concentration range 2.0-10.0 µg/mL Lev. The methods exhibited a high accuracy, with recovery data within ±1.9% and RSD <1.3% (n = 9) for the determination of Lev in the presence of Clo. Fortunately, Lev showed no significant UV absorbance at 370.6 nm, which allowed the determination of Clo over the concentration range 16.0-80.0 µg/mL using zero-order spectra, with a high precision (RSD <1.5%, n = 9). Furthermore, principal component regression and partial least-squares with optimized parameters were used for the determination of Lev in the presence of Clo. The recovery was within ±1%, with RSD <1.0% (n = 9) and root mean square error of prediction ≤1.0. The proposed methods were validated according to the International Conference on Harmonization guidelines. The proposed methods were used in the determination of Lev and Clo in a binary mixture and a pharmaceutical formulation, with high accuracy and precision.


Assuntos
Anti-Helmínticos/análise , Levamisol/análise , Salicilanilidas/análise , Calibragem , Combinação de Medicamentos , Análise dos Mínimos Quadrados , Análise Multivariada , Espectrofotometria Ultravioleta
3.
Biomed Chromatogr ; 28(9): 1278-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24619929

RESUMO

A novel reversed-phase HPLC method was developed and validated for the assay of tetracycline hydrochloride and the limit of 4-epianhydrotetracycline hydrochloride impurity in tetracycline hydrochloride commercial bulk and pharmaceutical products. The method employed L1 (3 µm, 150 × 4.6 mm) columns, a mobile phase of 0.1% phosphoric acid and acetonitrile at a flow rate of 1.0 mL/min, and detection at 280 nm. The separation was performed in HPLC gradient mode. Forced degradation studies showed that tetracycline eluted as a spectrally pure peak and was well resolved from its degradation products. The fast degradation of tetracycline hydrochloride and 4-epianhydrotetracycline hydrochloride in solution was retarded by controlling the autosampler temperature at 4 °C and using 0.1% H3 PO4 as diluent. The robustness of the method was tested starting with the maximum variations allowed in the US Pharmacopeia (USP) general chapter Chromatography <621>. The method was linear over the range 80-120% of the assay concentration (0.1 mg/mL) for tetracycline hydrochloride and 50-150% of the acceptance criteria specified in the individual USP monographs for 4-epianhydrotetracycline hydrochloride. The limit of quantification for 4-epianhydrotetracycline hydrochloride was 0.1 µg/mL, 20 times lower than the acceptance criteria. The method was specific, precise, accurate and robust.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Tetraciclina/análise , Tetraciclina/normas , Cromatografia Líquida de Alta Pressão/normas , Contaminação de Medicamentos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tetraciclina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...